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For the two- and three-dimensional nearest neighbors lsing model in the 
presence of a magnetic field, we study numerically asymptotic properties of the 
set of orthogonal polynomials associated with the Lee-Yang measure. This 
provides an insight into the nature of this measure near its end points, on the 
Lee-Yang circle. We introduce a smoothness index which analyzes the structure 
of the measure. Its value is found to be equal to 2 within 10 _3 for all the models 
tested in two and three dimensions, at any temperatures. The results strongly 
suggest the absence of any singular part (continuous or pure point) in the 
measure, even in dimension 3. We also confirm, using a different method, 
known results on the behavior of the measure near its end points. 

KEY WORDS: Lee-Yang measure; end-point singularities; orthogonal 
polynomials. 
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Our question of interest was to know more about the nature of the 
measure d~br(0). From the decomposition theorem we know that a positive 
measure is the sum of three parts: absolutely continuous, pure point, and 
singular continuous. In particular one can ask if there would be a dramatic 
change in the nature of the measure when one goes from two to three 
dimensions. To try to answer such questions one must enter into the 
delicate analysis of the way in which the zeroes of the orthogonal 
polynomials associated to the measure approach asymptotically their 
limits, and also of the way the coefficients of the three terms recursive 
relation, that such polynomials fulfill, behave for large indices. It is the pur- 
pose of this paper to give some insight into these questions. 

Numerical approximations to the gap Oo(T), to the density of d~br(0), 
and to the index a of its behavior at 0o given by ~b'r(0) ~ (0 - 0o) ~ have been 
obtained from high temperature series and/or high field series for various 
models. (4) The high temperature limits have been subsequently improved {5) 
and the result for dimension two a = - 0 . 1 6 3 + 0 . 0 0 3  is in excellent 
agreement with the exact result c r= - -~  recently determined. (6'7) Other 
investigations based on renormalization group techniques m ,o) suggest a 
very complex structure of the Yang Lee edge, confirmed by Ref. 11. 

In this note we carry out a new analysis of the Lee-Yang measure 
d~br(0) for various models starting from its trigonometric moments, given 
by the coefficients of the Mayer-Yvon expansion. After transforming the 
trigonometric moment problem into a moment problem on the real line {12) 
we compute the related orthogonal polynomials. The available coefficients 
en 1, fin (n ~<N) on the associated Jacobi matrix rapidly approach con- 
stant values c~, fl so that we can approximate the measure with an explicitly 
computable measure whose Jacobi matrix has O~n_ 1 ~---0~ and 3 . = 3  for 
n > N. The convergence of c~ n and /~n to ~ and /~ shows that the measure 
consists of a continuous part, whose points of increase are dense in 
[ ~ -  2x/-~, c~ + 2 x f 3 ]  and a (at most denumerable) set of mass points out- 
side (c~-2, , /~,  c~ + 2 x f ~ ) w i t h  possible accumulation points at c~ + 2x/-  ~. 
All the others parameters Oo(T) and or(T) of the measure can also be 
estimated by using some asymptotic properties of the orthogonal 
polynomials and their zeroes. For  T<<. Tc the functions Oo(T) and ~r(T) are 
known: indeed Oo(T)=0 for T~< T C and if we assume ~b~(0)= 0 ~(n cbr(O ) 
where Or(O) is analytic in a neighborhood of 0 =0 ,  then the existence of a 
spontaneous magnetization M =  Mo for T <  Tc and the critical behavior 
M ~ H  1/6 at T--  Tc imply a ( T ) =  1 for T <  Tc and cr(Tc)=�89 1). 

Below the critical temperature the known values of 00 and a are 
reproduced with a very high accuracy using extrapolation techniques. At 
the critical temperature the accuracy is still high (see Table I) even though 
the results are affected by the uncertainty on T~ itself for the three-dimen- 
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sional models. Above the critical temperature the extrapolated values for 
Oo(T) are still accurate, while for or(T), which itself depends on Oo(T), the 
results are rather poor  since some extrapolations are no longer reliable (see 
Figs. 2 and 3). 

The present analysis provides an approximation to the measure which 
is not a simple f i t  but satisfies all the constraints of a Stieltjes moment  
problem and suggests that the measure has a smooth Jacobi-like density. 
The largest zero Xn.n of the nth degree orthogonal polynomial converges to 
a limit as n ~ for n --, o% and an extrapolation procedure allows the deter- 
mination of s with a good accuracy. The value s = 2 within 10 3 found for 
all the tested models at several temperatures suggests the absence of pure 
point masses outside the support  of the absolutely continuous part  of the 
measure (see Appendix 2). No essential difference appears between two- 
and three-dimensional models as far as the smoothness of the masure is 
concerned. 

1. T H E  L E E - Y A N G  R E P R E S E N T A T I O N  

We consider a ferromagnetic Ising model on a lattice of dimensions d 
with c nearest neighbors. The partition function for a subset of N spins is 
given by 

{~} i,j " 

where cr i_+l, J is a real positive constant, H is the magnetic field, /~ = 1/kT 
is the inverse temperature and the sum 52* runs over the nearest neighbors. 
We use the following variables 

x = e  2/~s z = e  2~H (1.2) 

w h e r e x ~ [ 0 , 1 ]  a n d z E [ 0 , 1 ] , H > 0 .  
Lee and Yang (2) have proved that all the zeroes of ZN are on the unit 

circle Iz] = 1 and the free energy per spin FN = -1/( /?N) log ZN has a limit 
when N ~  oo given by the following representation 

F(z, x) = lira FN = - - H -  ~ J - -  
N ~ oo 0 ( x )  

The magnetization is given by 

l o g ( 1 - 2 z c o s O + z 2 ) d ~ ( O )  (1.3) 

M(z, x ) =  ---=OF 2(1 - z  2) dq)x(O) 
c~H 0(x) 1 - 2z cos 0 + z 2 

(1.4) 
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and since this is an odd function of the magnet ic  field H its symmet ry  in 
the variable z reads 

M(z, x) = -M(1/z,  x) (1.5) 

so that  we can restrict our  analysis to z e [0, 1]. The  measure  is normal ized 
on the circle, namely,  

2 dOx(O) = 1 (1.6) 
0(x) 

The M a y e r - Y v o n  expansion of M(z, x) a round  z = 0 reads 

M(z, x)= 1 - 2  ~ lJ#t(x)z l (1.7) 
l = 1  

and - l  Jet are the t r igonometr ic  m o m e n t s  of the measure  2&b~(0) 

ore 

-lJ#~(x) = 2 ~ cos lO dO:(O) (1.8) 
,) Oo(x) 

In order  to approx ima te  the measure  and 0o we first t ransform the m o m e n t  
p rob lem (1.8) into a m o m e n t  p rob lem on the real line/12) In t roduc ing  the 
variable 

4z 1 
v ( l + z )  2 cosh2f iH  (1.9) 

the magnet iza t ion  can be writ ten as 

M=- 29Ix/1-v= 2 lx/177-V fo dOx(O) 1.10) 
o(x/1 - v cos2(0/2) 

After the change of variables defined by 

4 0 V 
cos2~ w =  ( l - u )  1.11) 

~ = l - u  z 

where 
x c odd 

U ~ 
X 2 C e v e n  

the function 34 can be writ ten as 

u)cos2(O0/2) dA(~) a2(w, u) = 14j~1 
T - - ~  Jo 

1.12) 

1.13) 
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where dd~(z) is related to &bx(O ) by 

dq~.(r) = &b~ (2 arccos X f ~  r ) 

When dq~. has a density we can write 

~'~(~) = 2 ~/r ( 1 ~ 4  u - z) ~b~ (2 arccos ~ z ) 

(1.14) 

Observe that the range of integration in (1.13) is always finite because of 
the inequality 

~ - 0 0 ~ 2  ( ~ -  4,) 

where x =  sin 0/2 and 0 > ~z/2 (12'13) (c is the coordination number of the 
lattice). The expansion of M around w = 0 reads 

Fi(w, u)= 1 + ~ wZ~(u) (1.15) 
1 = 1  

where ~(u) defined by 

( , 4 / ( 1  - -  u)cos2(O0/2) 
~ ( u ) =  Jo r' dd,(z) (1.16) 

are polynomials in u. (~3) The relation with the Mayer-Yvon coefficients is 
given by 

- J l j (1 u)' ~,(u) = ~ i - ,  

So we are faced with a moment problem for a measure dq~,(r) defined an 
the interval 

I 4 O, A(u) = 1 - u c~ 

where A(u) is exactly known only for T~< Tc when 0o= 0. We shall first 
assume that d~,(O) is absolutely continuous in the neighborhood of A(u) 
and that ~' ~bu(v) has a singularity at A(u) of the form 

~'u(z) ~ [A(u ) -  r]  ~(u~ ~ ~ A ( u )  (1.18) 
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One can easily show that a singularity occurs in M for w = A l(u), that is 
iBH = 0o/2, when cr < 0 

M(w, u)'-~ [1 - wA(u)] ~(~ w -~ A -l(u) (1.19) 

Below the critical temperature the end point singularity of ~r corresponds 
to H = 0 and implies 

M ( v , x ) ~ ( 1 - v ) I / 2 ( 1 - v ) ~ ( U ) ~ H I + 2 ' ~ ( " )  v-+l; H--*0 (1.20) 

Comparing with the expected behavior of the magnetization M ~  M0 + o(1 ) 
for T <  Tc and M ~ H  1/~ for T =  Tc we argue that 

G(u)  = 

1 

2 

1 

2. ORTHOGONAL POLYNOMIALS AND A P P R O X I M A T I O N S  TO 
THE MEASURE 

Let d~b(~) be a measure defined on E0, A], M(w) the associated 
Stieltjes function and ~ its moments 

- 1 + w l ~  (2 .1 )  M(w)=jo  - t=l 

Given the moments ~o, .~1 . . . . .  # 2 N + 1  then, using standard algorithms, one 
can compute the Jacobi matrix JN truncated at order N 

I ~O fll 
j x =  131 ~1 G 

�9 . , " . .  

\ 0  fiN 
�9 . 

o~ N ) 

(2.2) 

The monic orthogonal polynomials with respect to d~b(z) are given by the 
recursion relation 

Pn+ I(Y) = (Y -o~n) P,~(Y)- finP,,-I(Y) (2.3) 

with P I(Y)= 0 and Po(Y)= 1. The associated orthogonal polynomials are 
defined by 

Q,(y)  = (y - c%) Q~_ l(y) - -  fl~Qn- 2(Y) 
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with Q l(y)=0 and Q0(y)=  l, and the [ n - 1 / n ]  Pad6 approximants to 
(i/w) M(1/w) are given by 

Q~ l(w) 
[ n -  1 /n](w)-  - -  (2.4) 

P~(w) 

We denote by x j,. the zeroes in increasing order of the orthogonal 
polynomial P.(x) and recall the following results: 

T h e o r e m  1. If for some e > 0 the measure d~b(r) is absolutely con- 
tinuous in [ A - ~ ,  A] and ~b'(~)~(A-~)~ ( a >  -1 )  for ~ [ A - ~ ,  A], then 

1 
x ~ , . - - A ~  n--+oo (2.5) 

T h e o r e m  2. Under the same conditions on &b(v) as in Theorem 1 
but with - l < ~ r < 0  

I n -  1/nJ(A)..~n -2~ n ~ oo (2.6) 

Let pn(x) denote the normalized orthogonal polynomials whose 
recurrence is given by 

x / - ~ + l p . + , ( y ) = ( y - - ~ n ) p . ( y ) - x ~ , ~ p . _ l ( y )  (2.7) 

with initial conditions p l ( y ) = O  and p o ( y ) = l ,  then one has the 
following. 

Theorem 3. If d~b(~) is absolutely continuous and if 
~b'(r) = ( A - ~ ) ~ f ( r )  with a >  -1  and f ( r )  =Z(Z)I-[~=1 [t~-~l  ~k, 
(0~<tk<A, a k > - - 1 ,  k =  1,...,o7) where Z(r) is a positive continuous 
function with a "smooth" behavior, then 

pn(A)~n~+l/2 pn(xn+l,n+l)~n ~ 1/2 n--+oo (2.8) 

In Appendix 1 we give a proof of Theorem 2 and references to the 
proofs of Theorems 1 and 3. We also fix the notation ,.~ and the precise 
meaning of "smooth" there. Given the sequence r n defined by 

+ con~O (1 + ~  + ... c~ .. a + ~--~ + ' j  (2.9) 

then we can compute co as the limit of a new sequence co(l) 

co~)=nl~ (2.10) 
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or if a is not known of the sequence (o~ 2~ 

= o 3 - 1 + O  (2.11) 
f n  - -  fn  - 1 

The limit of the sequences (2.10) and (2.11) can be obtained by 
extrapolation algorithms such as Thiele continued fraction (see Appen- 
dix 3). 

Smooth approximations to the measure can be given if the sequences 
c~, and fin rapidly converge to limit values e and ft. In fact the measure 
d~b(r) corresponding to the truncated Jacobi matrix JN is a sum of N 6 
functions, but if we consider an infinite Jacobi matrix J* where the 
diagonal sequences c~* and fl*+ 1 have the constant values e and fl for n ~> N 
then the corresponding measure d~b*(z) has a continuous density and 
possibly a finite number of 6 functions. In Appendix 2 we explain that for a 
Jacobi matrix J* defined by 

f l , + l = f l , + l ,  n < N  ( f l ,+ l  = fl, n>~N 

the corresponding measure is given by the following density (provided 
point masses are absent) 

~b*'(17) - 1 x/4fl - (17 - c~)2 (2.12) 
2~ ~p2(17) __ ~Np2 1(17) - -  (17 - -  0~) N ~ N  PN(17) PN--1(17) 

where p.(17) are the normalized orthogonal polynomials which can be com- 
puted by (2.7). We further observe that if e and fl are the limits of the 
sequences c~n and fin then the relations with the endpoints 0 and A of the 
interval of orthogonality are given by (still provided there are no point 
masses) 

c ~ - 2 x / f i = 0  c~ + 2x/-fl= A (2.13) 

These relations are useful to check the accuracy of the numerical guesses 
for the limits of the sequences c~ n and Bin. 

3. LEE-YANG M E A S U R E  A N D  RELATED P A R A M E T E R S  

We have computed using formal languages the moments ~(u)  for the 
square, triangular, honeycomb two-dimensional lattices and cubic, dia- 
mond three-dimensional lattices using the available tables for the coef- 
ficients of the polynomials. ~13) For the square lattice the moments are 
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available up to order l =  15, for the triangular up to l =  10 and for the 
remaining models moments  up to l =  13. We have also computed the 
moments  for the Bethe lattice with coordination number  c = 3, 4, 6 up to 
order l =  15. 

Starting from the / = 2 N +  1 available moments  the coefficients 
0~0, ~1,'", ~N and fll , '" ,  /~N of the corresponding Jacobi matrix JN w e r e  com- 
puted and the zeroes xl,n < x2,~ < ' "  < x,,n of the orthogonal  polynomials 
Pn(Y) = det[  y I - J n - 1 ]  determined. The limits c~, fl and s of the sequences 
con, fin and Xn,n were computed with an extrapolation procedure based on 
the Thiele continued fraction (see Appendix 3) and the relations c~ = 2x /~  
and 37 = 2~ = A were found to be satisfied with a good accuracy (at least 
10 3 as can be checked for instance in Table I). The gap angle 00 was 
determined above the critical temperature according to 

0o = 2 arccos (1 - u) (3.1) 

In Fig. 1 a plot of 00 as a function of T/Tc is given for four different models 
(we did not plot the triangular lattice being almost coincident with the 
square lattice). 

If we assume that x,,n=A+con ~(l+Cl/n+c2/n2+... +), even 
though we have no a priori arguments to exclude nonanalytic corrections 
in 1In to the leading order, then s can be determined by extrapolating with 

Fig. 1. 

2.00 

1.00 

~o 

.00 T/To 
.00 7.50 15.00 

The Lee Yang edge 00 as a function of TIT C. From top to bottom we have the cubic, 
the diamond, the square, and the honeycomb lattice. 

822/43/1-2-7 
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the Thiele algorithm the sequences s,~ s(, 2~ computed according to (2.10), 
(2.11). The results obtained for all the tested models in a wide range of 
temperatures are compatible with s = 2 (see also Table I, where the rapid 
convergence of the extrapolations, to be expected if the corrections to the 
leading order are analytic, can be observed). This is also a good indication 

that the measure dO'u(~) has no point masses above ~ + 2x/-fl = A. 
The index ~r(u) of the singularity q~',(~) ~ [A(u) - ~]~ of the measure at 

the endpoint A(u) was computed following three different methods sum- 
marized by (2.6) and (2.8). 

The sequences 

a(~ ) = n Q,(A)  P , (A)  
- ~ l o g  Pn+~(A) Q,_~(A)  

-(2) 1 Pn+l(A) 
n = - ~ + n l o g  (3.2) 

Pn(A) 

0-(3) = L pn(Xn+l'n+l) 
n 2 + n l ~  Pn l(x,,.n) 

all converge to ~r (the first one only for 0- < 0) and were all computed for all 
the models at various temperatures. When A is exactly known, that is 
below the critical temperature, the extrapolations (see Appendix 3) greatly 
improve the convergence of the sequences 0-(1), 0-(2/: for instance at T =  �89 
one obtains a = - �89 with an error less than 10 .6 

At the critical temperature the extrapolations are still reliable and the 
(1), 0-(2) if(3) rate of convergence of the sequences en, ft,, x .... s(~ 1), s(, 2~, o,  n , 

(n = 1,..., N) and their extrapolations for the square and the diamond lat- 
tices can be read in Table I. (We recall that -s(~ 1), -s(~ 2) are defined by 
(2.10), (2.11) where rn, co, a are replaced by x .... - s ,  A and that their 
limits differ by one unit). The top values of the o sequences 0-(N 1~, 0-(U 2~, a(N 3~ 
and their extrapolations for all the other tested models are quoted in 
Table II. As we mentioned in the introduction one should compare them 
with o-(Tc) = �89 - 1 ) that is o-(Tc) = - 7 for the two-dimensional models 
and a(Tc)= _1  for the Bethe lattice; for the three-dimensional models 6 is 
not exactly known and if we rely on Domb (14) as we did for the critical 
temperatures then a(Tc) ~- _2  while more recent estimates of the magnetic 
susceptibility based on the renormalization group (15~ (6 = 4.80-t-0.03) give 
0-(To)= --0.3958+0.0006. If one excludes the cubic lattice, the 
extrapolations on 0-(~2)(Tc) for all the tested models agree with the expected 
values within 10 3, the extrapolations on 0-(~l)(Tc) exhibit the same 



Nature of the Lee-Yang Measure for Ising Ferromagnets 97 

Table II. Values of the Lee-Yang Edge Singularity o Computed by 
Three Different Methods (3.2) at the Critical Temperature and at 

Very High Temperature ~ 

Square lattice -.438 (-.467) -.464 (-.467) -.387 (-.491) T =  Tc 
(15moments)  -.207 (-.199) -.142 (-.149) -.078 (-.179) T =  co 

Honeycomblatt ice -.436 (-.465) -.464 (-.464) .361 ( .475)  T =  T~ 
(13moments)  -.226 (-.232) -.213 (-.241) -.053 (-.168) T =  co 

Triangular lattice -.418 (-.467) -.463 (-.466) -.319 (-.480) T =  T< 
(10moments) -.206 (-.207) -.152 (-.039) .004 (-.212) T =  

Diamond lattice .390 (-.397) -.400 (-.398) -.313 (-.403) T =  71< 
(13 moments) .087 ( .046)  .154 ( .066)  T =  oo 

Cubic lattice -.371 ( .321)  -.370 (-.315) -.294 (-.357) T =  T, 
(13 moments) .099 ( .048)  .175 ( .078)  T =  co 

B e t h e ( c = 3 )  -.372 ( .341)  -.350 ( .333)  -.293 (-.321) T = T c  
(15moments)  .345 ( .821)  .361 ( .536)  T = o o  

Bethe ( c = 4 )  -.356 ( .339)  -.338 (-.333) -.273 (-.326) T =  T c 
(15 moments) .406 ( .726)  .442 ( .512)  T =  co 

Bethe ( c = 6 )  .345 (-.337) -.331 (-.333) .262 (-.329) T =  T< 
(15 moments) .432 ( .686)  .475 ( .506)  T =  Go 

a The values between brackets are the extrapolations obtained with the interpolation points 
1/n. 

accuracy except for the Bethe lattice where the agreement is only within a 
few percent just as for the extrapolations of a(, 3) for all the models. 4 

Above the critical temperature the extrapolations become less reliable 
and for T>> T, ~r is rather small or positive so that the sequence ~r(~ 1) does no 
longer converge. In Figs. 2 and 3 we plot ~r~), ~r~), Cr(N 3) for all the models in 
the full temperature range (we recall that if we plotted the extrapolated 
values, for T <  T: the three curves would be indistinguishable from the 
straight line a = -�89 The behavior of a~), ~r(N 3) above the critical tern- 

4The lower accuracy of the sequence ~r~ 3~ and their extrapolations is due to the lack of one 
piece of information, the endpoint of the cut A, as it is evident from (3.2). The loss of 
accuracy of the extrapolations of a~ ~ for the Bethe lattice is due to the range of convergence 
of these sequences which, according to Theorem 2 is limited to - 1  <• < 0  rather than 
- 1  < or. As a consequence the convergence is optimal around a = - �89 and rapidly decreases 
when 0 or - 1  are approached, as one can check on the Jacobi polynomials P(~ 1/:)(x). The 
value ~r = i for the Bethe lattice is sufficiently further from - �89 than for the two- and three- 
dimensional model to explain the observed loss of accuracy. 
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Fig. 2. The Lee-Yang edge singularity a as a function of x. The full line is the approximation 
by ~r~l, the dashed line corresponds to a(~, and the pointed line is for oral. When T >  Tc the 
dashed line is only significant for the two-dimensional models. 
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dashed line is only significant for the two-dimensional models. 
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perature is similar in all the models (if one maps the x intervals [-Xc, 1 ] 
into [1, 1] then the curves for the models of the same dimensionality 
almost superimpose) but even though we know that the curve should be 
flat for the Bethe lattice one cannot exclude that, for the remaining models, 
a is temperature dependent for T >  To. The asymptotic values of a(T) for 
T ~  oe are reported in Table II: the values of a~) are the closest to the 
exactly known value a = - 1/6 for the two-dimensional models, so that for 
the three-dimensional models the estimate from a~ / would be cr = 0.09 in 
agreement with previous results. 

The measure d~u('c) was approximated by the measure dq;*(z) 
according to (2.12). The procedure is reliable since the sequences c~ n and fin 
converge very fast to limits e and fl which were computed using the Thiele 
extrapolation algorithm. We have calculated the sums ZN=I Kn and 

U 
~- .n  = 1 nK, w h e r e  

which give an idea of how fast the ~ and ft. converge to their limits ~ and 
fl, as indicated in Appendix 2. 

Table III. Partial Sums of the Series Specifying the Convergence of the 
Sequences on and [~n to Their Limits. 

Sequences 

N 

x = l X c  X = X  c 

N N N N 

E k~ E nk~ E ~ E nk~ 
n = l  n = l  n = l  n = l  

Square lattice 

Diamond lattice 

1 1.003069 1.003069 1.023669 1.023669 
2 1.005132 1.007196 1.050449 1.077229 
3 1.005200 1.007399 1.056753 1.096142 
4 1.005208 1.007431 1.059826 1.108433 
5 1.005209 1.007439 1.061590 t.117253 
6 1.005210 1.007440 1.062750 1.124214 
7 1.005210 1.007441 1.063574 1.129980 

1 1.005073 1.005073 1.025372 1.025372 
2 1.008803 1.012533 1.061084 1.096796 
3 1.008973 1.013115 1.076309 1.142472 
4 1.009011 1.013170 1.083411 1.170877 
5 1.009012 1.013178 1.087674 1.192195 
6 1.009013 1.013180 1.090492 1.209103 
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• and x = Xc because we We have only calculated these sums for x = 2 ,. 
can find the limits c~ and/~ exactly for x < xc by the equations 

~ -  2,~ffl = 0 
4 

c ~ + 2 x ~ =  1 - u  

It is clear from Table I I I  that below the critical temperature these sums 
increase very slowly as N increases. At the critical temperature we see, 
however, that the s u m  ~.U nKn increases more rapidly, which is consistent n = l  

with the fact that we find an index ~r different from + �89 for this temperature. 
Indeed, as explained in Appendix 2, when this sum converges one can only 
have square root singularities at the endpoints of the interval. The absence 
of point masses in the measure dq~*(r) is indicated by the convergence of 

.30 

.15 

0.0 - -  

square lattice 

5Z J 

0.0 5.0 10,0 

3 0  

T c 

,15 

diamond lattice 

0.0 i 

0.0 5.0 10,0 

Fig. 4. The approximation to the density of the Lee-Yang measure on [0, A(u)-~]  where 
e =A(u)/lO0 for the square and diamond lattice at the temperatures T =  To, 2To, and 5To. 
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xn.~ to its limit: if an isolated point mass is present then this convergence 
would be exponential and we find instead a convergence of the order n -  2. 
The results for &b*(r) are shown in Figs. 4 and 5 for To, 2To and 5Tc. 
Below the critical temperature the behavior of the measure d~*(z) is always 
the same, characterized by end point singularities with exponent - 1 .  At 
higher temperatures the behavior changes considerably and there is good 
agreement with a negative exponent at the endpoint A(u) for the two- 
dimensional models. For the three-dimensional models the behavior of the 
curves at A(u) is consistent with a small positive index at high temperature 
and an index close to �89 comes out for the Bethe models. It can be noticed 
that the actual approximation dq~* has square root singularities at the 
endpoints 0 and A but the presence of near lying poles (the polynomials in 
the denominator of (2.12) have no zeros in [0, A])  can simulate a behavior 

.50 

I 5T c 

2T c .25 

0.0[ 
0.0 2.0 4.0 

Fig. 5. 

,50 

.25 

0.0 
0,0 2.0 4.0 

The approximation of the density of the Lee Yang measure for the Bethe lattice on 
[0, 4 cos2(oao/2)] for T= To, 2Tc and 5T~. 
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with a different index. This is the reason why we have excluded a small 
neighborhood of A in plotting the density of d~*. The singularity at 0 is 
always consistent with - �89 for all the models at all temperatures. The direct 
computation of this index using the sequences (3.2) confirms this result 
with high accuracy (at least 10 6). 

CONCLUSIONS 

The method we propose to analyze the Lee Yang measure and its 
relevant parameters relies upon the properties of the orthogonal 
polynomials associated to it rather than on best-fitting methods. Infor- 
mation about the regularity of the measure is obtained and smooth 
approximations are computed. Their behavior is consistent with the indices 
of the endpoint singularities computed with independent procedures. 
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APPENDIX 1 

In this appendix we give results on the behavior of the orthonormal 
polynomials pn(x) belonging to a measure &b(r) on the interval [ - 1 ,  1]. 
The results can easily be generalized to an arbitrary interval [a, b]. We will 
frequently use the notation a ~ b ,  which means that there exist two con- 
stants c~ and c2 such that, for every n, 0 < c~ ~ a,/b, ~< c2 < 00. As before 
Xl,n < x2,  < ""  < xn,, the zeroes of p,(x)  in increasing order. 

T h e o r e m  1. If d~(r) is absolutely continuous in [1 - s ,  1 ] for some 
s > 0  and if ~b ' ( r )~(1-z )  ~ ( a > - l )  for r e [ l - s ,  1], then for every 
x.+l j,.~ [1-8 ,  1] 

j2 
1 --Xn+l_j,n,~, 7 (A.1) 

Proof. Define 3j, n by x j , = c o s 3 j ,  n ( j =  l,..., n) and set x , + l , n = l  
(3n+l,n =0),  then from Theorem 21, p. 165 (16) we find 

0 , -<n- -  0~+1 k , ~ l / n  
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hence 
: 1 j 

k=0 H 

from which the theorem follows immediately. 
The asymptotic behavior (A.1) is not always valid for absolutely con- 

tinuous measures. An interesting counterexample is given by the Pollaczek 
polynomials for which 1 -x~,, '~ 1In. (~7) The exponent s = 2 is an indication 
that the behavior of the density near the endpoint is smooth; the Pollaczek 
density tends exponentially fast to zero near the endpoints _+1. 

T h e o r e m  2. If &b(r) is absolutely continuous in [1 - e ,  1 ] for some 
e > 0  and if ~b ' (z )~(1-z)~  ( a >  - 1 )  for ~6 [ l - e ,  1] then 

n 2or - l < a < O  

[n-1/n](l),.~ logn a = 0  

1 a > 0  
(A.2) 

Proof. The [-n-  1/n] Pad6 approximant to 51 1 da(r)/(z-  ~) is given 
by 

I n -  1/n](z)= 
j =  l Z - -  Xj, n 

where {)v,, J = 1 ..... n } are the Christoffel numbers or Gauss-Jacobi weights 
for the measure &b(,). We split up [ n -  l /n](1)  in two parts 

I n -  l /n](1)  ~ 2in &j,~ : ~ " ~  2 S1-~-$2  
I1 x j , n l < ~ l - - X J ,  n I I -x j ,n l>~ 1 - - X J ,  n 

For the second sum one easily finds 

1 n), _1 
s2 .< -  2 

g j = l  

1fll 
$ 2 ~ ' 2  I1 - xj,nl > ~ 

from which $2~  1 follows. According to Theorem 27 (pp. 119 120) (16) the 
first sum behaves as 

, ! t  2~ . j l  - x:,, + 
$1 ~ 1  

n II-x:,nl <~ 1-xj, , ,  
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and by (A.1) 

I1 -- Xj,n[ < ~ 

The number of terms in this summation is approximately (Theorem 12.7.2, 
p. 310) (17) 

so that 
nA 

S 1 , ~ n  2or 2 j2~ 1 

j = l  

The result now follows immediately from 

~A { 1 --1 < ~ r < 0  

2 j2o-l~ 1 logn o '=0  
j = l  F/26~ 0 " ~ 0  

Theorem 3. Suppose d ~ ( t ) = w ( t ) d t  where w(t) is a generalized 
Jacobi weight (16'18) 

N 
w ( t ) = X ( t ) ( 1 - t ) ~ ( l + t )  ~ H I t k - t l  ~k - l < t < l  

k = l  

where a,/~, ak > -1 ,  - 1  < tl < t2 < ' "  < tu < 1 and X(t) is a positive con- 
tinuous function on [--1, 1 ] for which 

;~ co( t ) < oc dt 
t 

with co(6) = sup { IX(t) - )~(s)p; fs - tl < 6 }. For the normalized orthogonal 
polynomials belonging to the weight w(t) one finds 

p ,(1) ,,~ n ~ +1/2 (A.3) 

p , ( x , + l , n + l ) ~ n  ~ 1/2 (A.4) 

ProoL (i) is just Corollary 34 (p. 171) (16) while (ii) follows from 
Theorem 31 (p. 170) (16) combined with (A.1). 

A P P E N D I X  2 

In this appendix we review some properties of the measures dO(t) of 
orthogonal polynomials for which the recurrence coefficients (the coef- 
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ficients of the Jacobi matrix) converge to finite limits. Suppose a sequence 
p , ( t )  of orthogonal polynomials satisfies a three term recurrence relation 

a . + , p . + l ( t ) + b . p . ( t ) + a ~ p .  ~( t )=tpn(t)  

where a , + l > 0 ,  b, eN  ( n = 0 ,  1/~__2,...) and p 1 (0=0 ,  p o ( t ) = l  (in this 
appendix we have taken an = x//~,, and bn = ~n)- A very interesting class of 
such polynomials is the class for which the coefficients a,  and b, converge 
to limits a > 0 and b. The simplest example is when all the coefficients are 
constant, a n + l = a  and b n = b  ( n = 0 ,  1,2,...), which gives the Chebyshev 
polynomials of the second kind U , ( ( x - b ) / 2 a )  corresponding to the 
measure dO(t) = w(t) dt given by 

w ( t )  =  /40 - ( t  - b )  b - 2a <<. t <<. b + 2a 

Other cases of interest are the polynomials for which an + 1 = a and b, = b 
for n/> N. The m e a s u r e  dGN(t ) for this case consists of two parts, dON(t) = 
WN(I ) dt + Z j  c~6(t - tj) dt where 

1 x/4a 2 - (t - b) 2 

Wx(t) -=-~ a2pZ(t) + aNPN2 2 l(t) _ (t -- b) aNPN(t ) PN-- l(t) ' 

t e  [b - -2a ,  b + 2 a ]  

and the mass points tj are the zeros of the polynomial 
aZp~u(t) 2 2 + aNPN_ l(t) -- (t -- b) auPN(t  ) P N -  l(t) for which 

pN+ (tj) 

All the zeroes of that polynomial are outside ( b - 2 a ,  b + 2 a )  since 
otherwise the density WN would not be integrable on (b - 2a, b + 2a). There 
may be a zero at b + 2a so that WN has square root singularities at b + 2a. 

When the sequences a,  and b, do not attain their asymptotic value 
after a finite number of steps then the measure dO(t) for the orthogonal 
polynomials is the weak limit of the measure dON(t). When 

{ t n 1--~- 7 -f <oo  
n = l  a 

then the truncated m e a s u r e  dON(l) provides a good approximation to the 
measure dO(t) since one c a n  s h o w  O9-21) that dO(t) consists again of two 
parts, d0 ( t )=  w ( t ) d t + Z j 3 ( t - t y ) d t ,  where the mass points are finite in 
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number and outside (b - 2a, b + 2a). The singularities of w(t) at b -t- 2a can 
only be square root singularities. The weaker condition 

an lb._ -br 1 - ~  + - <oo 
n = l  

still gives a measure dqk(t)= w(t)dt + Z cj 6 ( t -  tj)dt but now the number 
of mass points tj may be infinite having accumulation points at b_+ 2a 
while the singularities of w(t) at b + 2a may have an index different from 
+~. 

In the general case were an ~ a and bn ~ b the measure consists of a 
continuous part (whose points of increase are dense in [ b - 2 a ,  b + 2a])  
and a pure point spectrum with possible accumulation points in [ b - 2 a ,  
b + 2 a ] .  (2~ If the measure has a largest mass point A greater than b + 2a 
then the convergence of the largest zero Xn,n to A is exponentially fast since 
(xn,~- A)~/n converges to a positive constant less then one3 22) 

APPENDIX 3 

Given a sequence Yn which can be interpolated according to 
Yn =f(1/n2) where f ( x )  is analytic in a neighborhood of the origin, the 
limit ) 5 = l i m n ~  y ,  is given by the value of f ( x )  at the origin and 
approximations to ~ are provided by polynomial or rational interpolations. 

Letting xn = 1In 2 the rational interpolations are obtained by truncating 
the Thiele continued fraction 

X - - X  1 
f ( x )  = al -} 

X - - X  2 

a 2 +  

a 3 -l- 

x - -  x n 

a n - }  L+~(x) 

where f , +  l(x) is a remainder which fulfills the recurrence 

/ . ( x ) =  a . +  x - x .  
/n+l(X) 

n> 1, L ( x ) - f ( x )  

If we are given the sequence xn, y,,, 1 <~n<~N then the an, 1 <~n<~N are 
recursively determined by 

= n+l<<.j<~N n = 1,..., N -  1 a~= fn(xn)' fn+ l(Xj ) f~(xj)_an' 

with the initialization f l (xj )  = f (x j ) ,  1 E j ~< N. 
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T h e  r a t i o n a l  a p p r o x i m a t i o n s  of  i nc r ea s ing  o r d e r  

1 ~< n ~< N are  g iven  by the  r e c u r r e n c e  

Qn+l(X) = a . +  1Qn(x)  + ( x - x . ) Q n _ ~  

Pn+ l (x )  = a ~ +  l P~(x )  + ( x -  x ~ ) P ~ _  l 

in i t i a l i zed  by  Po = 1, P1 -- a l ,  Q0 = 0, Q1 = 1. 

Van Assche, Turchetti, and Bessis 

rn = Po(x)/Qn(x), 
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