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On the Nature of the Lee-Yang Measure for
Ising Ferromagnets
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For the two- and three-dimensional nearest neighbors Ising model in the
presence of a magnetic field, we study numerically asymptotic properties of the
set of orthogonal polynomials associated with the Lee-Yang measure. This
provides an insight into the nature of this measure near its end points, on the
Lee-Yang circle. We introduce a smoothness index which analyzes the structure
of the measure. Its value is found to be equal to 2 within 103 for all the models
tested in two and three dimensions, at any temperatures. The results strongly
suggest the absence of any singular part (continuous or pure point) in the
measure, even in dimension 3. We also confirm, using a different method,

known results on the behavior of the measure near its end points.

KEY WORDS: Lee-Yang measure; end-point singularities;
polynomials.

INTRODUCTION

Many thermodynamical properties of the ferromagnetic Ising model are
related to a positive measure dip{0) defined on the unit circle z = e” of the
activity z plane, as proved by Lee and Yang.!"? The analytic form of
dp(0) is not known and even its support |0] > 6,(T), which above the
critical temperature 7, is no longer the full circle,"®’ remains to be deter-

mined.
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Our question of interest was to know more about the nature of the
measure d¢(0). From the decomposition theorem we know that a positive
measure is the sum of three parts: absolutely continuous, pure point, and
singular continuous. In particular one can ask if there would be a dramatic
change in the nature of the measure when one goes from two to three
dimensions. To try to answer such questions one must enter into the
delicate analysis of the way in which the zeroes of the orthogonal
polynomials associated to the measure approach asymptotically their
limits, and also of the way the coefficients of the three terms recursive
relation, that such polynomials fulfill, behave for large indices. It is the pur-
pose of this paper to give some insight into these questions.

Numerical approximations to the gap 8,(7), to the density of d¢(8),
and to the index o of its behavior at ), given by ¢+(6)~ (6 — 6,)° have been
obtained from high temperature series and/or high field series for various
models.” The high temperature limits have been subsequently improved‘®
and the result for dimension two o= —0.163+0.003 is in excellent
agreement with the exact result o= —1 recently determined.®” Other
investigations based on renormalization group techniques®'® suggest a
very complex structure of the Yang-Lee edge, confirmed by Ref. 11.

In this note we carry out a new analysis of the Lee~Yang measure
d¢ (0) for various models starting from its trigonometric moments, given
by the coefficients of the Mayer-Yvon expansion. After transforming the
trigonometric moment problem into a moment problem on the real line*?)
we compute the related orthogonal polynomials. The available coefficients
&,_1, f. (n<N) on the associated Jacobi matrix rapidly approach con-
stant values «, § so that we can approximate the measure with an explicitly
computable measure whose Jacobi matrix has «,_;=a and f,=f for
n> N. The convergence of «, and 5, to « and § shows that the measure
consists of a continuous part, whose points of increase are dense in
[a— 2\/3, o+ 2\/5] and a (at most denumerable) set of mass points out-
side (¢ —2./f, a+2./B) with possible accumulation points at ai2\/ﬁ.
All the others parameters 6,(7) and o(7T) of the measure can also be
estimated by using some asymptotic properties of the orthogonal
polynomials and their zeroes. For T'< T, the functions 04(7T) and o(T) are
known: indeed 0,(7)=0 for T< T, and if we assume ¢'(0)= 0" & (0)
where @ () is analytic in a neighborhood of 8 =0, then the existence of a
spontaneous magnetization M = M, for T< T, and the critical behavior
M~HY at T=T, imply o(T)= —1i for T<T, and 6(T,)=3(1/5 —1).

Below the critical temperature the known values of 8, and ¢ are
reproduced with a very high accuracy using extrapolation techniques. At
the critical temperature the accuracy is still high (see Table I) even though
the results are affected by the uncertainty on T itself for the three-dimen-
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sional models. Above the critical temperature the extrapolated values for
0,(T) are still accurate, while for a(T'), which itself depends on 8,(7T), the
results are rather poor since some extrapolations are no longer reliable (see
Figs. 2 and 3).

The present analysis provides an approximation to the measure which
is not a simple fit but satisfies all the constraints of a Stieltjes moment
problem and suggests that the measure has a smooth Jacobi-like density.
The largest zero x,, of the nth degree orthogonal polynomial converges to
a limit as n~* for n — oo, and an extrapolation procedure allows the deter-
mination of s with a good accuracy. The value s =2 within 10 ~* found for
all the tested models at several temperatures suggests the absence of pure
point masses outside the support of the absolutely continuous part of the
measure (see Appendix 2). No essential difference appears between two-
and three-dimensional models as far as the smoothness of the masure is
concerned.

1. THE LEE-YANG REPRESENTATION

We consider a ferromagnetic Ising model on a lattice of dimensions d
with ¢ nearest neighbors. The partition function for a subset of N spins is
given by

Zy=) exp [~B<~Jz*oiaj—HZa,>J (1.1)
{o} ij i

where o, +1, J is a real positive constant, H is the magnetic field, f = 1/kT

is the inverse temperature and the sum Y * runs over the nearest neighbors.

We use the following variables

x=e W g (1.2)
where xe[0,1] and ze[0,1], H>0.

Lee and Yang™ have proved that all the zeroes of Z,, are on the unit
circle |z| =1 and the free energy per spin Fy= —1/(BN)log Z, has a limit
when N — oo given by the following representation

Flz, x)= lim F)= —H—%J— " log(1—2zcos0+22)dp(0)  (13)

N oo Bo(x)
The magnetization is given by

M(z, x)= —E=2(1—22)Jﬂ dg(0)

—_— 14
oH o) 1 —2z cos 4 22 (14)
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and since this is an odd function of the magnetic field A its symmetry in
the variable z reads

M(z, x)= —M(1/z, x) (1.5)

so that we can restrict our analysis to z € [0, 1]. The measure is normalized
on the circle, namely,

z[“ b (0) =1 (1.6)

Box)
The Mayer-Yvon expansion of M(z, x) around z =0 reads
Mz, x)=1-2 i LA x)z' (L.7)
=1
and — /L4, are the trigonometric moments of the measure 2d¢ (0)
—Ldtfx)=2 J:;(x) cos 10 d (6) (18)

In order to approximate the measure and 6, we first transform the moment
problem (1.8) into a moment problem on the real line."'* Introducing the
variable

4z 1

= p—t 1.9
"T 127 cosh’pAH (19)
the magnetization can be written as
- g dp (6)
M=M/1-v=2/1- —_— 1.10
v v LO(X) 1 —vcos2(0/2) (1.10)
After the change of variables defined by
4 ,0 v
— - = (1= A1
T 1_ucos 5 w 4(1 u) (1.11)
where
u={x2 codd (1.12)
X ceven
the function M can be written as
_ 4/(1 — wyeos2(60/2) b
Mw, u)= | " dg.1) (1.13)
0 1 —wr
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where dé (1) is related to d¢ (0) by

dd (1) =df. (2 Arccos /12”r> (1.14)

When d@, has a density we can write

du(1)=2 /r(lju >¢;<2arccos lzur>

Observe that the range of integration in (1.13) is always finite because of
the inequality

m—0,<5 (n—y)

where x =sin /2 and ¥ > /2! (¢ is the coordination number of the
lattice). The expansion of M around w =0 reads

Mo u)=1+ Y waw) (1.15)
/=1

where 2(u) defined by

4/(1 — u)cos2(6y/2)

2= o df (1) (1.16)

0

are polynomials in «.!'> The relation with the Mayer-Yvon coefficients is
given by

2] ! 21
-z =5 ()= () (117)

J=1

So we are faced with a moment problem for a measure d@, () defined in
the interval

4 i
[O,A(u): 1 _ucoslf]

where A(u) is exactly known only for T< T, when 0,=0. We shall first

assume that d@,(0) is absolutely continuous in the neighborhood of A(u)
and that §/(7) has a singularity at 4(u) of the form

Pt~ [Aw) =117 1 Au) (1.18)
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One can easily show that a singularity occurs in M for w= A '(u), that is
ifH = 0,/2, when o <0

Mw, u)~[1—-wA(u)]°™ w— A" (u) (1.19)

Below the critical temperature the end point singularity of M corresponds
to H=0 and implies

M(v, x)~(1 —0)*(1 —p)° @~ H 20 51, H-0  (1.20)

Comparing with the expected behavior of the magnetization M~ M+ o(1)
for T< T, and M~H'" for T=T, we argue that

—5 u<u,

e B
515 u=u,

2. ORTHOGONAL POLYNOMIALS AND APPROXIMATIONS TO
THE MEASURE

Let dg(t) be a measure defined on [0, A], M(w) the associated
Stieltjes function and %, its moments

4 d
M(W):Jo lf(fv)f

ag(u)=

=1+ Y w2 (2.1)
I=1

Given the moments %), 4,,.., .1 then, using standard algorithms, one
can compute the Jacobi matrix J, truncated at order N

a P 0
In= Ay fx_l .1.32 _ (2.2)
\0 BN Ay

The monic orthogonal polynomials with respect to d¢(t) are given by the
recursion relation

P =(y—o,) Py} =B Pr 1) (2.3)

with P_,(y)}=0 and Py(y)= 1. The associated orthogonal polynomials are
defined by

Qn(y):(y_an) QnAl(y)_ﬁnQnAZ(y)
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with Q_,(y)=0 and Q,(y)=1, and the [n—1/n] Padé approximants to
(1/w) M(1/w) are given by

[n - 1/n]<w)=9;f% (24)

We denote by x,, the zeroes in increasing order of the orthogonal
polynomial P,{(x) and recall the following results:

Theorem 1. If for some ¢ >0 the measure d¢(z) is absolutely con-
tinuous in [A—¢, 4] and ¢'(t)x(A—1)° (0> —1)forte[A—¢, A], then

1
)

— A~

X n— (2.5)

Theorem 2. Under the same conditions on dg(t) as in Theorem 1
but with —~1 <o <0

[n—1/n)(A)xn2 1 — 00 (2.6)

Let p,(x) denote the normalized orthogonal polynomials whose
recurrence is given by

Bois P i(9)= (9= 0,) pul(¥) =/ B P () (2.7)

with initial conditions p_,(y)=0 and py(y)=1, then one has the
following.

Theorem 3. If dp(r) is absolutely continuous and if
¢(t)=(A—1) f(r) with o> -1 and [f(v)=y() [Ty, 1, — 7|
0<1,<4, o,>—1, k=1,.,m) where y(r) is a positive continuous
function with a “smooth” behavior, then

pn(A)zna+l/2 pn(xn+1,n+l)znail/2 n— 0 (28)

In Appendix 1 we give a proof of Theorem 2 and references to the
proofs of Theorems 1 and 3. We also fix the notation ~ and the precise
meaning of “smooth” there. Given the sequence r, defined by

c c
rn=a+C0nw<1+‘;1+"'+n_§+"'> (29)

then we can compute w as the limit of a new sequence w(!

_ 1
a)f}):nlogr—"ﬂ—a=w+0<;> (2.10)

n
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or if a is not known of the sequence w!®

— 1
w;”:nlog:—"Li:w_Ho(Z) (2.11)

n n—1

The limit of the sequences (2.10) and (2.11) can be obtained by
extrapolation algorithms such as Thiele continued fraction (see Appen-
dix 3).

Smooth approximations to the measure can be given if the sequences
o, and S8, rapidly converge to limit values « and . In fact the measure
d¢(t) corresponding to the truncated Jacobi matrix Jy is a sum of N ¢
functions, but if we consider an infinite Jacobi matrix J¥ where the
diagonal sequences «* and f¥, , have the constant values « and fforn= N
then the corresponding measure d¢¥%(t) has a continuous density and
possibly a finite number of é functions. In Appendix 2 we explain that for a
Jacobi matrix J¥ defined by

af=ua a¥=o
{1 " n<N {; ’ n>N
ﬁn+1=ﬁn+13 Bn+1=ﬂ9

the corresponding measure is given by the following density (provided
point masses are absent)

1 JAB— (1 —a)?
- (2.12)
21 Bp2 () — B p_ (1) — (1 — 2)/ By PalE) Poy_1(2)

where p,(t) are the normalized orthogonal polynomials which can be com-
puted by (2.7). We further observe that if « and § are the limits of the
sequences «, and f, then the relations with the endpoints 0 and A4 of the
interval of orthogonality are given by (still provided there are no point
masses)

#x'(7)

a—2/B=0 a+2/B=4 (2.13)

These relations are useful to check the accuracy of the numerical guesses
for the limits of the sequences «, and §,,.

3. LEE-YANG MEASURE AND RELATED PARAMETERS

We have computed using formal languages the moments #(u) for the
square, triangular, honeycomb two-dimensional lattices and cubic, dia-
mond three-dimensional lattices using the available tables for the coef-
ficients of the polynomials.’*) For the square lattice the moments are
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available up to order /=15, for the triangular up to /=10 and for the
remaining models moments up to /=13. We have also computed the
moments for the Bethe lattice with coordination number ¢=3,4, 6 up to
order /= 15.

Starting from the /=2N+1 available moments the coefficients
Ug, Oy yens &y and fy,..., B of the corresponding Jacobi matrix J, were com-
puted and the zeroes x,,<Xx,,< - <x,, of the orthogonal polynomials
P, (y)=det[ yI—J,_] determined. The limits «, § and % of the sequences
«,, B, and x,, were computed with an extrapolation procedure based on
the Thiele continued fraction (see Appendix 3) and the relations a = 2\/3
and X =2a= A were found to be satisfied with a good accuracy (at least
10~% as can be checked for instance in TableI). The gap angle 8, was
determined above the critical temperature according to

f, =2 arccos (1 —u) (3.1)

=

In Fig. 1 a plot of 8, as a function of T/T, is given for four different models
(we did not plot the triangular lattice being almost coincident with the
square lattice).

If we assume that x,,=A+con *(1+c,/n+cy/n’+ -+ +), even
though we have no a priori arguments to exclude nonanalytic corrections
in 1/n to the leading order, then s can be determined by extrapolating with

2.00

1.00

1 T/TC
.00 7.50 15.00

Fig. 1. The Lee-Yang edge 6, as a function of 7/7.. From top to bottom we have the cubic,
the diamond, the square, and the honeycomb lattice.

822/43/1-2-7
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the Thiele algorithm the sequences s{), s computed according to (2.10),
(2.11). The results obtained for all the tested models in a wide range of
temperatures are compatible with s=2 (see also Table I, where the rapid
convergence of the extrapolations, to be expected if the corrections to the
leading order are analytic, can be observed). This is also a good indication
that the measure d¢/ () has no point masses above a + 2\/5 =A.

The index o(u) of the singularity ¢.(t)~ [A4(x) —t]° of the measure at
the endpoint A(u) was computed following three different methods sum-
marized by (2.6) and (2.8).

The sequences

o n QA PA)
o= T e @ 0, ()

1 (A
e = —§+n10gp;n—(1§)-2 (32)

pn('xn+1,n+1)

1
cP==+nlog
2 pnfl(xn,n)

all converge to o (the first one only for 0 <0) and were all computed for all
the models at various temperatures. When A is exactly known, that is
below the critical temperature, the extrapolations (see Appendix 3) greatly
improve the convergence of the sequences 6", ¢{?: for instance at T=1T,
one obtains ¢ = —} with an error less than 10~°.

At the critical temperature the extrapolations are still reliable and the
rate of convergence of the sequences a,, f,, X,,, si), s@, ¢, ¢®, ¢
(n=1,.., N) and their extrapolations for the square and the diamond lat-
tices can be read in Table I. (We recall that —s{!), —s(? are defined by
(2.10), (2.11) where r,, w, a are replaced by x,,, —s, 4 and that their
limits differ by one unit). The top values of the ¢ sequences ¢, 63, o(}’
and their extrapolations for all the other tested models are quoted in
Table II. As we mentioned in the introduction one should compare them
with o(7.)=4(1/6 — 1) that is 6(T,) = — for the two-dimensional models
and ¢(7T,.)= —1 for the Bethe lattice; for the three-dimensional models ¢ is
not exactly known and if we rely on Domb"* as we did for the critical
temperatures then ¢(7.) ~ —% while more recent estimates of the magnetic
susceptibility based on the renormalization group™®’ (6 =4.80 +0.03) give
o(T,})= —0.3958 £0.0006. If one excludes the cubic lattice, the
extrapolations on ¢@®(T,) for all the tested models agree with the expected
values within 102, the extrapolations on ¢()(T,) exhibit the same
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Table Il. Values of the Lee-Yang Edge Singularity ¢ Computed by
Three Different Methods (3.2) at the Critical Temperature and at
Very High Temperature®

ol oD el
Square lattice —438 (-467) ~.464 (-467) -387 (-491) T=T.
(15 moments) -207 (-199) —-142 (-.149) -078 (=179) T=ow
Honeycomb lattice —436 (-465) —-464 (-464) -361 (-475) T=T,
(13 moments) —-226 (-232) -213 (-241) -053 (-168) T=o
Triangular lattice -418 (-467) —-463 (-.466) -319 (-480) T=T,
(10 moments) -206 (-.207) -152 (~.039) 004 (-212) T=w
Diamond lattice -390 (-.397) —-400 (-.398) -313 (-403) T=T.
(13 moments) 087 ( .046) A54 (1 .066) T=w
Cubic lattice =371 (-321) -370 (-315) -294 (-357) T=T,
(13 moments) 099 ( .048) A75 ( 078) T=w
Bethe (¢ =3) -372 (-341) -350 (-333) =293 (-321) T=T,
(15 moments) 345 ( .821) 361 (.536) T=w
Bethe (¢ =4) -356 (-.339) -.338 (-.333) =273 (-326) T=T.
(15 moments) 406 ( .726) 442 (( 512y T=w
Bethe (¢ = 6) —-345 (-337) —-331 (=333) -262 (-329) T=T.
(15 moments) 432 (.686) 475 ( .506) T=w

“The values between brackets are the extrapolations obtained with the interpolation points
U/n.

accuracy except for the Bethe lattice where the agreement is only within a
few percent just as for the extrapolations of ¢(® for all the models.*
Above the critical temperature the extrapolations become less reliable
and for T'> T, o is rather small or positive so that the sequence ¢!’ does no
longer converge. In Figs. 2 and 3 we plot 6§}, ¢§3, 6§’ for all the models in
the full temperature range (we recall that if we plotted the extrapolated
values, for T< T, the three curves would be indistinguishable from the
straight line ¢ = —1). The behavior of ¢{@, ¢}’ above the critical tem-

*The lower accuracy of the sequence ¢! and their extrapolations is due to the lack of one
piece of information, the endpoint of the cut A4, as it is evident from (3.2). The loss of
accuracy of the extrapolations of ¢{!) for the Bethe lattice is due to the range of convergence
of these sequences which, according to Theorem 2 is limited to —! <o <0 rather than
—1<g. As a consequence the convergence is optimal around ¢ = —4 and rapidly decreases
when 0 or —1 are approached, as one can check on the Jacobi polynomials P‘*~12)(x). The
value ¢ = —4 for the Bethe lattice is sufficiently further from — i than for the two- and three-
dimensional model to explain the observed loss of accuracy.
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|
l
l
1
|
!
!
square lattice {
i
|
|
|
|
|

0 simple cubic lattice

bethe lattice c =3

Fig. 2. The Lee—Yang edge singularity ¢ as a function of x. The full line is the approximation
by ¢{?, the dashed line corresponds to o), and the pointed line is for ¢}’. When 7> T, the
dashed line is only significant for the two-dimensional models.
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0 triangular lattice

0 diamond [attice

0r bethe latticec =4

Fig. 3. The Lee-Yang edge singularity o as a function of x. The full line is the approximation
by ¢, the dashed line corresponds to of}’, and the pointed line is for ¢3). When T'> T. the
dashed line is only significant for the two-dimensional models.
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perature is similar in all the models (if one maps the x intervals [x,, 1]
into [4,1] then the curves for the models of the same dimensionality
almost superimpose) but even though we know that the curve should be
flat for the Bethe lattice one cannot exclude that, for the remaining models,
o is temperature dependent for 7> T',. The asymptotic values of ¢(T) for
T— oo are reported in Table I1: the values of 62 are the closest to the
exactly known value ¢ = — 1/6 for the two-dimensional models, so that for
the three-dimensional models the estimate from ¢{’ would be ¢ =0.09 in
agreement with previous results.

The measure dg,(r) was approximated by the measure dg¥(t)
according to (2.12). The procedure is reliable since the sequences «, and £,
converge very fast to limits o and § which were computed using the Thiele
extrapolation algorithm. We have calculated the sums Y V_, K, and

N_ nK, where

n=1

_ & |(xn -1 O(l

NG
which give an idea of how fast the o, and f, converge to their limits o and
B, as indicated in Appendix 2.

+-

n

k=1

Table Ill. Partial Sums of the Series Specifying the Convergence of the
Sequences a, and B, to Their Limits.
Sequences
x=14x, X=x
N N N N
N Y k, Y nk, Yk, Y. nk,
n=1 n=1 n=1 n=1
Square lattice 1 1.003069 1.003069 1.023669 1.023669
2 1.005132 1.007196 1.050449 1.077229
3 1.005200 1.007399 1.056753 1.096142
4 1.005208 1.007431 1.059826 1.108433
5 1.005209 1.007439 1.061590 1.117253
6 1.005210 1.007440 1.062750 1.124214
7 1.005210 1.007441 1.063574 1.129980
Diamond lattice 1 1.005073 1.005073 1.025372 1.025372
2 1.008803 1.012533 1.061084 1.096796
3 1.008973 1.013115 1.076309 1.142472
4 1.009011 1.013170 1.083411 1.170877
5 1.009012 1.013178 1.087674 1.192195
6 1.009013 1.013180 1.090492 1.209103
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We have only calculated these sums for x =1x, and x = x, because we
can find the limits « and f exactly for x < x, by the equations

x—2/f=0 at2/f=rs

1—u

It is clear from Table Il that below the critical temperature these sums
increase very slowly as N increases. At the critical temperature we see,
however, that the sum }.V_, nK,, increases more rapidly, which is consistent
with the fact that we find an index ¢ different from = 1 for this temperature.
Indeed, as explained in Appendix 2, when this sum converges one can only
have square root singularities at the endpoints of the interval. The absence

of point masses in the measure dé*(7) is indicated by the convergence of

square lattice \

0.0 5.0 10.0

diamond lattice {

0.0 L
0.0 5.0 10.0

Fig. 4. The approximation to the density of the Lee—Yang measure on [0, 4(u)—¢] where
&= A(u)/100 for the square and diamond lattice at the temperatures T=T,, 2T, and 5T.,.
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X,, to its limit: if an isolated point mass is present then this convergence
would be exponential and we find instead a convergence of the order n %
The results for d¢¥(r) are shown in Figs. 4 and 5 for T,, 2T, and 5T..
Below the critical temperature the behavior of the measure df¥(r) is always
the same, characterized by end point singularities with exponent — 3. At
higher temperatures the behavior changes considerably and there is good
agreement with a negative exponent at the endpoint A(u) for the two-
dimensional models. For the three-dimensional models the behavior of the
curves at A(u) is consistent with a small positive index at high temperature
and an index close to § comes out for the Bethe models. It can be noticed
that the actual approximation d¢% has square root singularities at the
endpoints 0 and 4 but the presence of near lying poles (the polynomials in
the denominator of (2.12) have no zeros in [0, 4]) can simulate a behavior

.50
TC
5T,
25 ¢ 2Tc
bethe lattice c =3
0.0 L
0.0 2.0 4.0
50
.25 (
Bethe lattice ¢ =6
1
0.0
0.0 2.0 4.0

Fig. 5. The approximation of the density of the Lee—Yang measure for the Bethe lattice on
[0, 4 cos*(8/2)] for T=T,, 2T, and 5T,.
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with a different index. This is the reason why we have excluded a small
neighborhood of 4 in plotting the density of d#%. The singularity at 0 is
always consistent with — 1 for all the models at all temperatures. The direct
computation of this index using the sequences (3.2) confirms this result
with high accuracy (at least 10~°).

CONCLUSIONS

The method we propose to analyze the Lee—Yang measure and its
relevant parameters relies upon the properties of the orthogonal
polynomials associated to it rather than on best-fitting methods. Infor-
mation about the regularity of the measure is obtained and smooth
approximations are computed. Their behavior is consistent with the indices
of the endpoint singularities computed with independent procedures.
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APPENDIX 1

In this appendix we give results on the behavior of the orthonormal
polynomials p,(x) belonging to a measure d¢(t) on the interval [ —1, 1].
The results can easily be generalized to an arbitrary interval [a, b]. We will
frequently use the notation a,~b, which means that there exist two con-
stants ¢, and ¢, such that, for every n, 0 <¢, <a,/b,<c, < 0. As before
Xy, <Xy,< ' <Xx,, the zeroes of p,(x) in increasing order.

Theorem 1. If d¢(7) is absolutely continuous in [1 —¢, 1] for some
e>0 and if ¢'(t1)x~(1—1)" (6> —1) for Te[l—¢ 1], then for every
xn-f—lfj,ne [1—8’ 1]

1 ~j2
‘“xn+1—j,n~F (A.1)

Proof. Define §,, by x,,=cos$,, (j=1,.,n) and set x,, =1
(% +1,,=0), then from Theorem 21, p. 165"%) we find

‘9n~k,n_'9n+17k,nz1/n
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hence
i1 j
'9n+1~j,n= z (‘gnuk,n—‘gn+17k,n)z_
k=0

=

from which the theorem follows immediately.

The asymptotic behavior (A.1) is not always valid for absolutely con-
tinuous measures. An interesting counterexample is given by the Pollaczek
polynomials for which 1 —x,,,~1/n."” The exponent s =2 is an indication
that the behavior of the density near the endpoint is smooth; the Pollaczek
density tends exponentially fast to zero near the endpoints +1.

Theorem 2. If d¢(r) is absolutely continuous in [1 —e, 1] for some
e>0and if ¢'(t)~(1 —1)° (60> —1) for te[1 —¢, 1] then

n—2% —1<6<0
[n—1/n](1)~ {logn c=0 (A.2)
1 >0

Proof. The [n—1/n] Padé approximant to | do(t)/(z—1) is given
by
n )'jn
[n—1n)z)= Y, —2

STHET X

where {4, j=1,.., n} are the Christoffel numbers or Gauss—Jacobi weights
for the measure dg(t). We split up [#—1/n](1) in two parts

[n—1/m](L)= ) ——}!’"—-1— Y lﬂ—=51+52

— X — X,
11— xj0| <& . 11—xjul Z ¢ jn

For the second sum one easily finds

" 1

™ |-

Sz<

1 01
S hu~z) o dete)

11— xjnl 2

from which S,~1 follows. According to Theorem 27 (pp. 119-120)"'® the
first sum behaves as

S,>

b —

11— xjnl <& Jn
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and by (A.1)

11— xjul <&

The number of terms in this summation is approximately (Theorem 12.7.2,
p. 310)17)
n dt

1
;L_E—*——/——l_tzznzl

nd
Slzn72a' Z j20'71

j=1

so that

The result now follows immediately from

» 1 —1<o<0
Y o 'xlogn o=0
/=1 n* >0

Theorem 3. Suppose dg(z)=w(t)dt where w(t) is a generalized
Jacobi weight16:18)
N

w(t) = 7(t)(1 — 0)°(1 + 1)* [] —f% —l<t<l

where 0, f, 0,> —1, —1 <t <t,< ' <ty<1 and y(#) is a positive con-
tinuous function on [ —1, 1] for which

Jz wi )dt

0

with w(d)=sup{|x(z) — x(s)|; [s—¢| <d}. For the normalized orthogonal
polynomials belonging to the weight w(z) one finds

pa(1)mn®t 12 (A.3)
pn(xn+l,n+l)zno—71/2 (A4)

Proof. (i) is just Corollary 34 (p.171)"® while (ii) follows from
Theorem 31 (p. 170)® combined with (A.1).

APPENDIX 2

In this appendix we review some properties of the measures dg(z) of
orthogonal polynomials for which the recurrence coefficients (the coef-
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ficients of the Jacobi matrix) converge to finite limits. Suppose a sequence
p.(t) of orthogonal polynomials satisfies a three term recurrence relation

an+1pn+1(t)+bnpn(t)+anpn71(l)= tpn(t)

where a,,,>0, b, eR (n=0,1,2,..) and p_,(1)=0, po(t)=1 (in this
appendix we have taken a, =./f, and b,=«,). A very interesting class of
such polynomials is the class for which the coefficients a,, and b, converge
to limits ¢ >0 and . The simplest example is when all the coefficients are
constant, a,,,;=a and b,=b (=0, 1, 2,..), which gives the Chebyshev
polynomials of the second kind U,((x—b)/2a) corresponding to the
measure dg(z) = w(t) dt given by

w(r)= 4a>—(t—b)> b—2a<i<b+2a

1
2na®
Other cases of interest are the polynomials for which a,,,=a and b,=5

for n =z N. The measure do ,(¢) for this case consists of two parts, d¢ y(¢) =
wylt) dt+ 3, c;6(t —t;) dt where

1 J4a® — (t—b)? .
2w api(t)+ay pi_ (1) = (t—=b)ay palt) py_i(t)
te[b—2a,b+2a]

w (1)

and the mass points ¢ are the zeros of the polynomial

@’plt) +ay py (1) — (1= b) ay pa(t) py (1) for which

pN+1(tj)

pN(tj)

All the zeroes of that polynomial are outside (h—2a, b+ 2a) since
otherwise the density wy would not be integrable on (b — 24, b + 2a). There
may be a zero at b+ 2a so that w, has square root singularities at b 4- 2a.
When the sequences a, and b, do not attain their asymptotic value
after a finite number of steps then the measure dg(¢) for the orthogonal
polynomials is the weak limit of the measure d¢,(¢). When
a2

& ,, \bn-1—b|}
’E‘ln{' i + p <o

then the truncated measure d¢,(r) provides a good approximation to the
measure dé(t) since one can show"®2!) that dg(z) consists again of two
parts, dg(t)=w(t)dt+>;6(t—t;) dt, where the mass points are finite in
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number and outside (b — 2a, b + 2a). The singularities of w(¢) at b+ 2a can
only be square root singularities. The weaker condition

2 b, 1—Db]
ngl{ +————a }<oo

still gives a measure dg(z)=w(t) dr+ Y ¢; d(1—t;) dt but now the number
of mass points 7, may be infinite having accumulation points at b+ 2a
while the singularities of w(z) at b+ 2a may have an index different from
+3.

In the general case were a, — a and b, — b the measure consists of a
continuous part (whose points of increase are dense in [b—2a, b+2a])
and a pure point spectrum with possible accumulation points in [b—2a,
b+2a].%Y If the measure has a largest mass point A4 greater than b+ 2a
then the convergence of the largest zero x,,, to A is exponentially fast since
(xn.— A)"" converges to a positive constant less then one.*?

2
1- %
a2

APPENDIX 3

Given a sequence y, which can be interpolated according to
v,=f(1/n?) where f(x) is analytic in a neighborhood of the origin, the
limit y=Ilim,_ , y, is given by the value of f(x) at the origin and
approximations to jy are provided by polynomial or rational interpolations.

Letting x, = 1/n? the rational interpolations are obtained by truncating
the Thiele continued fraction

XX
X)=4da
S(x)=a,+ x— %,
a, +
a
3t +x—x,,
arl
fn+l(x)

where f,, ;(x) is a remainder which fulfills the recurrence

T nzl f)=10)

If we are given the sequence x,, y,, 1 <n< N then the a,, | <n<N are
recursively determined by

fx)=a,+

X;— X, .
=m’n+1<]<N n=1,.,N—1
n 7 n

with the initialization fi(x;) = f(x,), 1 <j<N.

{an ook fo 11
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The rational approximations of increasing order r,= P,(x)/Q,.(x),
1 <n< N are given by the recurrence

Qn+1(x):an+1Qn(x)+(x_xn)Qn—l
Pn+1(x)=an+1Pn(x)+(x_xn)Pn—l

initialized by Po=1, P, =a,, 0y,=0, 0, = 1.
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